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Abstract

Recognition of specular objects is particularly difficult because their appearance is much more
sensitive to lighting changes than that of Lambertian objects. We consider an approach in
which we use a 3D model to deduce the lighting that best matches the model to the image. In
this case, an important constraint is that incident lighting should be non-negative everywhere.
In this paper, we propose a new method to enforce this constraint and explore its usefulness
in specular object recognition, using the spherical harmonic representation of lighting. The
method follows from a novel extension of Szego’s eigenvalue distribution theorem to spherical
harmonics, and uses semidefinite programming to perform a constrained optimization. The
new method is faster as well as more accurate than previous methods. Experiments on both
synthetic and real data indicate that the constraint can improve recognition of specular objects
by better separating the correct and incorrect models.

Keywords: Non-negative lighting, specular object recognition, Szego eigenvalue distribu-
tion theorem, Szego limit theorem, spherical harmonics, semidefinite programming.
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1 Introduction

The appearance of an object varies significantly with a change in incident lighting. Model based
recognition approaches simulate this change to reduce sensitivity to lighting variations. This
approach has been successful for objects with diffuse or Lambertian reflectances. However,
recognizing shiny or specular objects is still difficult because their appearance changes dramat-
ically with even a minor change in lighting. We will explain why it is important to enforce a
non-negative lighting constraint when solving this problem for specular objects. We will then
describe a new exact and fast method to enforce it.

Model based object recognition is performed by comparing the image to an object model.
A model includes a structural description (e.g.: regularly sampled surface normals) and an
optical description (surface albedo, BRDF, etc. . . ). The comparison is an optimization over all
possible lighting conditions and produces an image from the model that is as close as possible
to the query image. The object whose model produces the closest image is the most likely one
to have produced the query image.

Since lighting intensity is a function of direction, and reflected light is a function of the
surface normal, both can be represented as functions on the surface of a sphere. Spherical
harmonics provide a basis for these functions that is analogous to a Fourier series expansion
for 1D functions (e.g. [1]). With this representation, the set of images that an object can
produce lie in a linear subspace, with a dimension that depends on the number of harmonics
we use. [1] show that only nine harmonics are needed to recognize convex Lambertian objects,
because Lambertian reflectance acts as a low-pass filter. However, specular objects reflect higher
frequency light (Thornber and Jacobs[15]), so modeling their appearance requires many more
harmonics.

Lighting is everywhere non-negative. With this constraint, a model’s images form a con-
vex subset of a linear subspace, making the matching problem more complex. When we use a
low-dimensional subspace to represent Lambertian objects, ignoring the non-negative lighting
constraint is not too serious. However, as the number of harmonics we use grows, the differ-
ence between the images produced by non-negative lighting and linear lighting models grows
exponentially.

For example, suppose we try to incorrectly match a uniform albedo sphere to an image of a
sphere that has a black dot on it. With low frequency harmonics, which suffice for Lambertian
objects, we can never approximate this black dot; it has too many high frequencies. With
a high-dimensional representation of light, which we need for specular objects, low frequency
lighting can produce smooth shading on a sphere, and high frequencies can create a negative
specular highlight that darkens the image in a small spot. To prevent this we must ensure that
our optimization does not allow negative light (see Figure 1).

Ramamoorthi [11] points out that the non-negativity constraint also helps reduce high
frequency noise, since by limiting the value of a function to be non-negative, we indirectly limit
the value of its high frequency components.

To enforce non-negative light we want a constraint on the first spherical harmonic coefficients
of light that will ensure that the light is non-negative everywhere. The lower order coefficients
need not correspond to a non-negative function, but there should exist a way to add higher order
harmonics that will make the function non-negative. Looking at the problem more generally,
we want to control the range of the function using only the first few coefficients.

In the analogous 1D case, i.e for a Fourier series, an interesting theorem, due to Gabor
Szego [4], addresses this problem. It describes a Toeplitz matrix (see section 3.1) of the first
few Fourier coefficients whose eigenvalues are contained in the range of the function. Also, the
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Figure 1: Two different albedo models (both are 4% mirror and 96% Lambertian) and images
generated from them while trying to best match the image in the lower left figure. If negative
light is allowed, we can get the lower left image from the top right albedo exactly.

Szego Eigenvalue distribution theorem states that as we use more harmonics, the eigenvalues
mimic the values taken by the function itself. As we make the Toeplitz matrix larger, the
smallest and largest eigenvalues converge to the minimum and maximum values of the function
respectively. Negative eigenvalues mean that the coefficients can’t be extended to correspond to
a non-negative function. So, if we constrain the eigenvalues to be non-negative (i.e the matrix
to be positive semidefinite), we can exclude all those low frequency functions that can’t be
extended by adding higher frequencies to become non-negative everywhere.

We extend this theorem to spherical harmonics. In this case, we obtain a much more
complicated matrix whose eigenvalues are similar to the function values. To constrain this
matrix to be positive semidefinite while minimizing the error between the query and generated
images, we use semidefinite programming.

Next, we perform experiments on both synthetic and real data to explore the usefulness of
imposing this constraint. We observe that imposing this constraint results in a significantly
greater mismatch between the query and incorrect models, for most specular objects. This can
improve recognition since now it is harder for the algorithm to get confused by noise in the
model or query image.

This paper is divided as follows. First, in section 2, we review some earlier work that has
used the non-negativity constraint. In section 3, we present the extension of Szego’s eigenvalue
distribution theorem to spherical harmonics: the key ingredient in our algorithm. Next, in
section 4, we review recovering lighting from an image given an object model, and formulate the
problem as a semidefinite program. Finally, section 5 describes some experiments on synthetic
as well as real data, which demonstrate the usefulness of the constraint.

2 Past Work

Various approaches to object recognition have used low dimensional linear subspace representa-
tions of the set of images produced by an object. For example, Hallinan [6], Murase and Nayar
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[8] and Yuille et al [19] have used PCA to model lighting variation and Basri and Jacobs [1] and
Ramamoorthi and Hanrahan [12] have used a spherical harmonic representation for an analytic
computation of the linear subspace of images. We also use a spherical harmonic representation
for images and lighting.

Belhumeur and Kriegman [2] have shown that the set of all possible images of an object under
arbitrary lighting is a convex cone, the illumination cone. Lighting is represented as a convex
combination (to ensure non-negativity) of the extreme rays of the convex cone. Computation
and memory requirements can be reduced by projecting the image, the illumination cone and
the extreme rays into a low dimensional subspace, although this makes the representation
approximate. Calculation of the extremal rays can be avoided by further approximating lighting
as a convex combination of rays uniformly sampled from the illumination sphere. They use a
non-negative least squares routine to perform the convex optimization.

For Lambertian objects, Basri and Jacobs [1] build on this by expressing the uniformly
sampled rays in terms of spherical harmonics. This approach works well for Lambertian objects
since they only reflect the diffused (low frequency) components of the incident lighting which
are well approximated by a few delta functions. However, since specular objects reflect many
more components of light, a very large number of delta functions are needed to represent
lighting accurately for them. This method is also approximate since the delta functions are
approximated by a few low frequency harmonics and are no longer just positive peaks. Non-
negativity of lighting was also enforced by Ramamoorthi et al [11] using a regularization term
during optimization. This clearly cannot guarantee that the solution will be non-negative.

There have been many other attempts at recognizing specular objects. Osadchy et al [10]
have used specular reflection in recognition by decoupling Lambertian reflection and highlights
and using them as separate cues. Sato et al [14] use a physics-based simulator to predict specular
features and analyze their detectability and reliability for recognition. Specularity detection is
performed using a set of aspects generated from the model by deformable template matching.
Gremban et al [3] use multiple views of an object to remove ambiguities due to specularities.

In this paper, we will describe a new, exact method for enforcing non-negativity, as a direct
constraint on the spherical harmonic coefficients of light.

3 The non-negativity constraint

We need a condition on the first few spherical harmonic coefficients flm of a function f(u) :
S2 → R that will imply that we can complete the spherical harmonic expansion of f such that
f(u) ≥ 0 for all u. Here, u := (θ, φ) is a point on the surface of the unit sphere, denoted as
S2. This problem is easier to deal with in 1D, when we need a condition on the Fourier series
coefficients fm of a function f(θ) : S1 → R (θ is a point on the unit circle S1). The condition for
non-negativity that we obtain in these two cases is completely analogous; but the expressions
are simpler for S1 and the more familiar Fourier series will help us to understand the method
better.

3.1 The Fourier case

Let Qn denote the space of functions on S1 spanned by {eimθ : 0 ≤ m ≤ n}, i.e functions that
only have low frequency components. The process of low pass filtering a function, so that the
output belongs to Qn is the same as an orthogonal projection from the space of all (integrable
or L1) functions to Qn. We will represent this operation as Qn. Let fm denote the mth Fourier
coefficient of the function f ∈ L1(S1).
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We will now develop some intuitive ideas about the non-negativity condition. First, let’s
represent the time domain product of two functions f and g, using only their Fourier series
coefficients, as a product of a matrix (composed of the coefficients of f) and the vector of
coefficients of g, denoted as ĝ. We can do this using the convolution theorem, if we consider
only the first n coefficients of f and g. Then, the result will be the first n coefficients of the
time domain product fg.

Let [f ] denote the operator multiplication by f . Then, denote the matrix of coefficients of
f by Qn[f ]Qn. In this notation, the first Qn indicates that we are considering only the first n
coefficients of f , which is equivalent to applying an ideal low pass filter to f or projecting f
into a low dimensional subspace spanned by the first n Fourier basis functions. The resulting
time domain function is f (n). The second Qn indicates the same for the function g. ĝn = Qnĝ
is a vector of the first n Fourier coefficients of g. Thus, we have,

Qn[f ]Qnĝ = Qnf̂ g (1)

Using the convolution theorem, we arrive at the following form for the matrix Qn[f ]Qn, called
a Toeplitz matrix.

Qn[f ]Qn = Tn(f) =




f0 f1 · · · fn

f−1 f0
. . .

...
. . .

. . . f1

f−n f−1 f0




(2)

The (ij)th element of this matrix is fj−i. Now if ĝn is an eigenvector of the matrix Qn[f ]Qn,
with the eigenvalue λ.

Tn(f)ĝ = λĝ (3)

In the time domain, we have
f (n)g(n) = λg(n) (4)

It is clear from this equation that λ lies in the range of values taken by f (n). Actually, we
can show that λ lies in the range of f too. Also, although this is not obvious from our crude
treatment, the eigenvalues λ are representative of the values taken by the function f itself.
These ideas are made concrete in Szego’s eigenvalue distribution theorem [4]. This theorem
states that the mean value of any continuous function is the same whether it is applied to the
eigenvalues of Qn[f ]Qn or to the values of the function f , i.e the eigenvalues are “distributed”
in the same way as the values of f . Hence, we can constrain the range of f by constraining the
eigenvalues.

Before stating the theorem, we need this definition: the essential lower bound (or essential
infimum, denoted by ess inf) of a function f(x) is the largest number m for which the inequality
f(x) ≥ m holds everywhere, except perhaps in a set of measure zero. The essential upper bound
(or essential supremum, denoted by ess sup) is defined similarly. First, we give another result
that states that the eigenvalues of Tn(f) lie in the range of f .

Theorem 1. Let f(θ) ∈ L1(S1) be a real valued function and Tn(f) be the Toeplitz matrix of

its Fourier series coefficients. λ
(n)
i , i = 1, . . . , n + 1 are the eigenvalues of Tn(f) arranged in

non-decreasing order. Let m and M be the essential lower and upper bounds of f(θ) respectively.
Then,

m ≤ λ
(n)
1 ≤ λ

(n)
2 ≤ · · · ≤ λ

(n)
n+1 ≤ M (5)
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The next step is the Szego Limit theorem, a fundamental result in the theory of Toeplitz
forms proved by Gabor Szego in 1917, and extended in 1955. Here we only need the original
limit theorem, and not its strong form. This can be thought of as a particular case of the main
theorem, and is the primary result used in its proof.

Theorem 2 (Szego Limit Theorem). Let f(θ) ∈ L1(S1) be a real valued function and Tn(f)
be its Toeplitz matrix as defined above. Then

lim
n→∞

tr log Tn(f)

n + 1
=

1

2π

∫

S1

log f(θ)dθ

Note that tr log Tn(f) = log det Tn(f) =
∑n+1

i=1 log λ
(n)
i . Now, we state the main theorem.

Theorem 3 (Szego: Eigenvalue Distribution Theorem). With notation and conditions
as above, and with m and M finite, let F (λ) be any continuous function defined in the interval
λ ∈ [m,M ], then

lim
n→∞

F (λ
(n)
1 ) + · · · + F (λ

(n)
n+1)

n + 1
=

1

2π

∫

S1

F (f(θ))dθ (6)

Corollary 1. With notation and conditions as above,

lim
n→∞

λ
(n)
1 = m, lim

n→∞
λ

(n)
n+1 = M (7)

The proofs of these theorems (except that of the Szego Limit theorem) and the corollary
are very similar to the proofs for the spherical harmonics casegiven in the next section. Proofs
can also be found in Grenander and Szego [4]. The first theorem and the corollary imply that
if the function f(θ) is non-negative everywhere, then the matrix Tn(f) is positive semidefinite
1 for all n. Also, as we will see from Theorem 7, if Tn(f) is positive semidefinite, there exists a
function f with the projection Qnf that is non-negative everywhere (except perhaps on a set of
measure zero). Thus, even though the projection Qnf that we obtain may not be non-negative
everywhere, we are guaranteed that it is the projection of a function that is non-negative
everywhere. Also, if Tn(f) is not positive semidefinite, we are guaranteed that the projection
Qnf cannot be extended into a non-negative function f . Thus, using this constraint rules out
all those lighting function projections and only those projections that do not correspond to a
physical lighting function. Note that although the Dirac delta function is not an element of L1,

the theorem is valid for it too, since all the eigenvalues of Tn(δ) are zero, except for λ
(n)
n+1 = n

which goes to infinity as n increases.

3.2 Spherical Harmonics

Next, we extend the theorem to the case of spherical harmonics, i.e to functions on S2. Let
PL be the space of functions that only have spherical harmonic components of order up to L.
Correspondingly, PL denotes the process of ideal low pass filtering the function f , so that we
only retain spherical harmonic components of order at most L. As we go from S1 to S2, we
have to restrict the set of functions on which the corresponding theorems are valid to H

1

2 (S2),
a Sobolev space of functions defined on S2. A function is said to belong to a Sobolev space
Hk if it has finite norm (the L2 norm in this case) and also if the norm of all derivatives of

1The symmetric matrix A is positive semidefinite if xtAx ≥ 0 for all vectors x, or equivalently, if all its
eigenvalues are non-negative.
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the function up to order k is finite. The derivatives need to exist only in a ‘weak’ sense. (see

[20] for more on Sobolev spaces and [9] for details on this theorem). H
1

2 (S2) is the space of

functions such that the norm ||(I − ∆)
1

4 f ||L2 is finite. Here, ∆ is the Laplace-Beltrami second
derivative operator, a generalization of the normal Laplacian operator for manifolds. I is the
identity operator. For more details, see [21]. C(S2) is the space of continuous functions defined
on S2. Most well-behaved and smooth functions belong to these spaces. First we show that
the eigenvalues of PL[f ]PL are contained in the range of f .

Theorem 4. Let f(u) ∈ L1(S2) be a real valued function. Let m and M be the essential lower
and upper bounds of f(u), respectively, λi, i = 1, . . . , (L + 1)2 are the eigenvalues of the matrix
PL[f ]PL. Then,

m ≤ λ
(L)
1 ≤ λ

(L)
2 ≤ · · · ≤ λ

(L)
(L+1)2

≤ M (8)

Proof. This proof is similar to the proof for the Fourier case given in [4]. Let ĝ be any vector
of length (L + 1)2 with unit L2 norm and let g(u) =

∑
lm ĝlmYlm(u). Thus,

∫
S2 |g(u)|2dσ(u) =∑

lm|ĝlm|2 = 1. By definition of PL[f ]PL, we have,

PL[f ]PLĝ = f̂ g

Consider the following quadratic form :

ĝ∗PL[f ]PLĝ =
∑

lm

ĝ∗lmf̂ glm

=
∑

lm

ĝ∗lm

∫

S2

f(u)g(u)Y lm(u)dσ(u)

=

∫

S2

f(u)g(u)

(
∑

lm

ĝ∗lmY lm(u)

)
dσ(u)

=

∫

S2

f(u)g(u)g(u)dσ(u)

=

∫

S2

f(u)|g(u)|2dσ(u)

Since, g is normalized, the last expression is simply a weighted mean of the function f and
hence it lies in the essential range of f . Hence, we have,

m ≤ ĝ∗PL[f ]PLĝ ≤ M

for all vectors ĝ with unit norm. If we choose ĝ to be an eigenvector corresponding to any
eigenvalue λ of PL[f ]PL, we get

m ≤ λ ≤ M

Thus, all the eigenvalues of PL[f ]PL are contained in the range of f .

We will now state the Szego limit theorem which is the main result needed in the proof of
the eigenvalue distribution theorem. A more general form of this theorem is stated and proved
by Okikiolu in [9].

Theorem 5 (Szego Limit Theorem in S2). Let f ∈ C(S2) ∩ H1/2(S2) be such that the
closed convex hull of the image of f does not contain the origin, 2 then

2Since are dealing with real valued functions only, this means that f takes either only positive or only negative
values, but not both.
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lim
n→∞

tr log Pn[f ]Pn

(n + 1)2
=

1

4π

∫

S2

log f(u)dσ(u)

Before stating and proving the eigenvalue distribution theorem, we need the formal definition
of the concept of equal distributions, as given by H. Weyl [4]. Two sequences of numbers

{a(n)
i }i=1,...,n+1 and {b(n)

i }i=1,...,n+1 such that |a(n)
i | < K and |b(n)

i | < K for all i and n are
equally distributed in the interval [−K,K] as n → ∞ if for any continuous function F (t)
defined in the interval [−K,K], we have

lim
n→∞

∑n+1
i=1 [F (a

(n)
i ) − F (b

(n)
i )]

n + 1
= 0 (9)

Here we use a slightly modified definition in which for each n, the sequences consist of (n+1)2

instead of (n + 1) numbers. Roughly, we can say that two sequences are equally distributed
if they take on similar values. We also need this test for equally distributed sequences: Two
sequences obey the equation (9) for arbitrary continuous functions F , ie they are equally
distributed, if the equation (9) is satisfied for certain special classes of functions. Two such
classes of these functions are F (t) = log(1 + zt) where z is real and |z| < K−1 and F (t) = ts

where s = 0, 1, 2, . . .

Theorem 6 (Eigenvalue Distribution Theorem in S2). Let f(u) ∈ C(S2)∩H1/2(S2) be a
real valued function. Let m and M be the essential lower and upper bounds of f(u), respectively

and assume that m and M are finite. λ
(L)
i , i = 1, . . . , (L+1)2 are the eigenvalues of the matrix

PL[f ]PL. If F (λ) is any continuous function defined in the finite interval λ ∈ [m,M ], then

lim
L→∞

F (λ
(L)
1 ) + · · · + F (λ

(L)
L+1)

(L + 1)2
=

1

4π

∫

S2

F (f(u))dσ(u)

This is a novel result. The proof of this theorem closely follows the proof of Szego’s original
theorem and uses Okikiolu’s [9] extension of a key lemma used in the theorem’s proof - the
Szego limit theorem.

Proof. The proof of this result follows Szego’s original proof. Using the definition of Riemann
integration as a limit, the theorem is equivalent to :

lim
L→∞

∑(L+1)2

m=1 F (λ
(L)
m ) − F (f(u

(L)
m )

(L + 1)2
= 0

where u
(L)
m = ( 2aπ

L+2 − π, bπ
L+2 − π

2 ); a, b = 1, 2, . . . , L + 1; a + (b− 1)L = m. Using the definition
of equal distributions we can restate the limit relation as follows:

The sequences λ
(L)
m and f(u

(L)
m ) are equally distributed.

Proving this for the special class of functions F (t) = log(1 + zt) is sufficient. We will now
apply the Szego limit theorem to the function 1 + zf(u), where z ∈ R is such that |zf(u)| < 1
for all u ∈ S2. We can do this since the function f(u) is bounded. This transformation ensures
that the closed convex hull of the image of 1 + zf(u) does not contain the origin. We have

PL[1 + zf ]PL = I + zPL[f ]PL
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since the vector space PL is closed wrt scaling and shifting. The eigenvalues of I + zPL[f ]PL

are 1 + zλ
(L)
m . Hence, using the fact that for any nonsingular matrix A, tr log A = log det(A) =∑

i log(λi(A)), we can write

lim
L→∞

∑(L+1)2

m=1 log(1 + zλ
(L)
m )

(L + 1)2
=

1

4π

∫

S2

log(1 + zf(u))dσ(u)

Again using the definition of Riemann integration, we have

lim
L→∞

∑(L+1)2

m=1 log(1 + zλ
(L)
m ) − log(1 + zf(u

(L)
m ))

(L + 1)2
= 0

Thus, the theorem is valid for the set of functions log(1+zt) and hence is valid for all continuous
functions.

We also have the corresponding corollary :

Corollary 2. With notation and conditions as above,

lim
L→∞

λ
(L)
1 = m, lim

L→∞
λ

(L)
(L+1)2

= M (10)

Proof. In the Fourier case, this is proved using a specific property of Toeplitz matrices (the fact
that TL is a principal submatrix of TL+1) that does not hold in the case of spherical harmonics.
Here we give a different proof of this result. From the proof of theorem 4, we have

ĝ∗LTL(f)ĝL

ĝL
∗ĝL

=

∫
S2 f(u)|gL(u)|2dσ(u)∫

S2|gL(u)|2dσ(u)

The subscript L indicates that gL ∈ PL. So, the minimum eigenvalue of TL(f) is given by

λ
(L)
min = min

gL∈PL

∫
S2 f(u)|gL(u)|2dσ(u)∫

S2|gL(u)|2dσ(u)

Since f is defined on the closed and bounded interval S2 and is continuous on it, it attains its
essential lower bound. Let um be a point where f(u) attains its essential lower bound. Now,
choose gL as the real valued function:

gL = PL[CLe−L2||u−um||2]

i.e, gL is the projection of a Gaussian into PL. The variance of the Gaussian decreases as 1/L2,
but the normalization constant CL is chosen to keep its area constant. Clearly, as L → ∞,
gL → Cgδ(u − um) and |gL|2 → Cg2δ(u − um) as well, for some suitable constants Cg and Cg2 .
CL can be chosen to make

∫
S2 |gL|2dσ(u) = Cg2 = 1. Note that we can take gL as any function

in PL whose square converges to a delta function. So, we have

lim
L→∞

λ
(L)
min ≤ lim

L→∞

∫
S2 f(u)|gL(u)|2dσ(u)∫

S2|gL(u)|2dσ(u)

=

∫
S2 f(u)

(
limL→∞|gL(u)|2

)
dσ(u)∫

S2 (limL→∞|gL(u)|2) dσ(u)

=

∫
S2 f(u)δ(u − um)dσ(u)∫

S2 δ(u − um)dσ(u)

= f(um)

= m
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Since we must have λ
(L)
min ≥ m for all L, we conclude that

lim
L→∞

λ
(L)
min = m

The second limit result can be proved similarly.

All we need to do now is calculate the matrix TL(f) := PL[f ]PL. We will use something
similar to the convolution theorem and calculate the (l1,m1)th coefficient of the time domain
product fg, where g ∈ L2(S2) is any real valued function.

(PL[f ]PLĝ)l1m1
= (f̂ g)l1m1

=

∫

S2

fgY lmdσ(u)

=
∑

l2m2

∑

lm

flmgl2m2

∫

S2

YlmYl2m2
Y l1m1

dσ(u)

=
∑

l2m2

∑

lm

flmgl2m2
G(ll2l1;mm2m1)

=
∑

l2m2

l1+l2∑

l=|l1−l2|

fl,m1−m2
G(ll2l1;m1 − m2,m2,m1)gl2m2

Here, G(l1l2l3;m1m2m3) =
√

(2l1+1)(2l2+1)
4π(2l3+1) C(l1l2l3;m1m2m3)C(l1l2l3; 000) is the Gaunt coeffi-

cient. C(l1l2l3;m1m2m3) are the Clebsch-Gordan (CG) coefficients. Both these coefficients are
real constants that arise naturally during the evaluation of integrals of products of spherical
harmonics. For more details, please see Appendix A.1 and [13, 7]. Thus the term in position
(l1m1, l2m2) := (l1(l1 + 1) + m1, l2(l2 + 1) + m2) in the matrix PL[f ]PL is

TL(f)l1m1;l2m2
=

l1+l2∑

l=|l1−l2|

fl,m1−m2
G(ll2l1;m1 − m2,m2,m1) (11)

The choice of the subscripts was made so that 1 corresponds to the row number and 2 to the
column number in the matrix. The size of the matrix is (L + 1)2 × (L + 1)2, since there are
(L+1)2 spherical harmonics of degree less than or equal to L. We can show that this matrix is
Hermitian, which is important because optimization software usually needs symmetric matrices
as inputs.

(Pn[f ]Pn)l1m1;l2m2
=

l1+l2∑

l=|l1−l2|

f l,m1−m2

√
(2l + 1)(2l2 + 1)

4π(2l1 + 1)
C(ll2l1;m1 − m2,m2,m1)C(ll2l1; 000)

=

l1+l2∑

l=|l1−l2|

(−1)m1−m2fl,m2−m1

√
(2l + 1)(2l2 + 1)

4π(2l1 + 1)

× (−1)m2−m1

(
2l1 + 1

2l2 + 1

)
C(ll1l2;m2 − m1,m1,m2)C(ll1l2; 000)
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(using properties (21) and (23) of the CG coefficients as listed in Appendix A.1)

=

l1+l2∑

l=|l1−l2|

fl,m2−m1

√
(2l + 1)(2l1 + 1)

4π(2l2 + 1)
C(ll1l2;m2 − m1,m1,m2)C(ll1l2; 000)

= (Pn[f ]Pn)l2m2;l1m1

If the function f is non-negative everywhere, TL(f) is positive semi-definite (denoted as TL(f) �
0). We also need to look at the converse problem. Does the positive semidefiniteness of TL(f)
imply that f is non-negative everywhere ? Since we deal only with the first few harmonic
components of f , we can arbitrarily add higher order harmonics to f . This gives an infinite
number of functions f corresponding to the same matrix TL(f), all of which are obviously not
non-negative. However what we are interested in is the existence of at least one function with
the given matrix TL(f), i.e with the given lower order harmonics, that is non-negative every-
where. This will ensure that the set of lower order harmonics obtained from the optimization
corresponds to a non-negative lighting condition. For the Fourier case, we have the following
theorem that answers this question.

Theorem 7. Given the first n Fourier coefficients of a real valued function f(θ), θ ∈ S1, if the
Toeplitz matrix Tn(f) (defined by equation (2)) is positive semidefinite, there exists a unique
function with the given lower order Fourier coefficients that is non-negative everywhere. This
is the sum of delta functions given by :

f(θ) = K0 +

n∑

p=1

Kpδ(θ − θp) (12)

(K0 = 0, Kp ≥ 0)

Furthermore, if the matrix Tn(f) is strictly positive definite, then there exist infinite functions
with the given lower order frequency components that are non-negative everywhere.

Proof. First consider the case when Tn(f) is positive semidefinite. We need to express the given
Fourier coefficients as the sum of the Fourier series coefficents of a set of n non-negative delta
functions. This can be done by using the theorem of Carathéodory, (Appendix C and [4] section
4.1). Corresponding to the complex constants f1, f2, . . . , fn, we have the unique real numbers
Kp ≥ 0 and θp ∈ S1; p = 1, 2, . . . , n such that

fν =

n∑

p=1

Kp eiνθp

(note that some of the Kp may be zero). Since we already have f−ν = f ν and f0 is such that
the Toeplitz matrix formed from them is positive semidefinite, this equation is valid for all the
given Fourier series coefficients of f . One possible function that has these initial Fourier series
coefficients and is non-negative everywhere is :

f(θ) =

n∑

p=1

Kpδ(θ − θp)

Now suppose there is another function f ′ that is non-negative everywhere and has the same
low frequency components. Then f ′ − f is composed only of high frequency components and
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hence must be negative on a set of finite non-zero measure. Since f is zero everywhere except
at finitely many points, the sum of f and f ′ − f cannot be non-negative everywhere. We thus
have a contradiction.

Now, if Tn(f) is positive definite, we can write the following form for f(θ) :

f(θ) = K0 +

n∑

p=1

Kpδ(θ − θp)

To obtain this representation, note that we can write f(θ) = K0 + f̃(θ) such that Tn(f̃) is
positive semidefinite and K0 > 0. Now we can obtain a representation for f̃(θ) as before. To
see that there are infinitely many other non-negative functions with the same Tn(f), add any
frequency component to f(θ) of order greater than n and magnitude less than K0. The resulting
function has the same Toeplitz matrix and is non-negative everywhere.

In the case of spherical harmonics, we have the corresponding conjecture:

Conjecture 1. Given the frequency components of a real valued function f(u), u ∈ S2, up
to order L, if the matrix TL(f) (defined by equation (11)) is positive semidefinite, there exists
a unique function f(u) with the given lower order frequency components that is non-negative
everywhere. This is the sum of δ function given by :

f(u) = K0 +

N(L)−1∑

p=1

Kp δ(u − up) (13)

(K0 = 0, Kp ≥ 0, N(L) = (L + 1)2)

Furthermore, if the matrix TL(f) is strictly positive definite, then there exist infinite functions
with the given lower order frequency components that are non-negative everywhere.

We are unable to prove this because, as far as we know, Carathéodory’s theorem does not
have a spherical harmonics analog. If the existence part is proved, then uniqueness in the
positive semidefinite case and the existence of infinite functions in the strictly positive definite
case can be proved exactly as in the Fourier case.

4 Recovering Lighting from an Image: Semidefinite Programming

The problem of recovering lighting from the image of an object using its model, can be treated
as an optimization problem. We assume a geometric model in the form of surface normals at
the various pixel locations and a reflectance model. If we have several models from several
different objects, the model that gives the least error corresponds to the object that created
the image.

We represent lighting in terms of spherical harmonics and analytically compute the image
when the object is illuminated by each individual harmonic. If these images are treated as
vectors and stacked as columns of a matrix, we obtain the model matrix M . In rendering the
images, we can use any reflectance model, or even a mixture of models. Now if the lighting
is described by the spherical harmonic coefficient vector a, the resulting image (as a vector I)
is given by I = Ma. If the image has N pixels and we use spherical harmonics up to order
L to describe the image, M has size N × (L + 1)2 and a and I are column vectors of lengths
(L + 1)2 and N respectively. Then, given the query image r = I + noise, a can be found by
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minimizing ||Ma− r|| subject to TL(a) � 0. Since we model frequencies only up to L, the error
will usually be non-zero even in the absence of noise. The problem size here is the number of
pixels in the image, which can be pretty large. We can reduce this by transforming the problem
from the image space to the space of spherical harmonics basis images (see [1]). First, compute
the QR decomposition of the matrix M , i.e M = QR where Q is an N × (L + 1)2 matrix with
orthonormal columns (QT Q = I) and R is an (L+1)2× (L+1)2 upper triangular matrix. Next
we project both Ma and f into the low ((L + 1)2) dimensional subspace by multiplying with
QT . We now need to solve the size (L + 1)2 problem:

min
a

||Ra − QT r||2

subject to TL(a) � 0

This is an optimization problem with a quadratic objective function and a matrix positive semi-
definiteness constraint. Such problems are called semidefinite programming (SDP) problems.
The matrix constraint itself is considered linear in SDP since each element of the matrix depends
linearly on the vector a (see section 5.1) and is a type of a Linear Matrix Inequality. We can
convert this into a linear problem (see [16]) by introducing a slack variable q.

min
a

q

subject to q > ||Ra − QT r||2 and TL(a) � 0

Now, the Schur complement property (see [16]) is used to convert the quadratic constraint into
the following equivalent linear constraint.

[
(1 + q)I

( 1−q

Ra−QT r

)
( 1−q

Ra−QT r

)T
(1 + q)I

]
� 0

This can be readily converted to a second order cone program (SOCP), which can be solved
faster. In an SOCP, the constraint is of the form

(α
v

)
∈ K2 :=

{(α
v

)
|α ≥ ||v||2

}
. K2 is called the

second order cone or Lorentz cone.

1 + q ≥
∣∣∣∣

∣∣∣∣
1 − q

Ra − QT r

∣∣∣∣

∣∣∣∣

So the final problem to be solved is :

min
a

q (14)

subject to 1 + q ≥
∣∣∣∣

∣∣∣∣
1 − q

Ra − QT r

∣∣∣∣

∣∣∣∣ and TL(a) � 0

This is a mixed SOCP-SDP problem and can be solved using standard SDP software.

5 Experiments

5.1 Implementation

The entries of the matrix TL(a) are linear combinations of the entries of the vector a and are
given by:

TL(l1(l1 + 1) + m1, l2(l2 + 1) + m2) =

l1+l2∑

l=|l1−l2|

al,m1−m2
G(ll2l1;m1 − m2,m2,m1) (15)
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Offline Online

Precompute Gaunt coefficient matrices Glm Obtain Query Images

Build Library of 3D models with structure
and reflectance properties

For each model, compute low frequency non-
negative lighting that best fits the query im-
age, i.e solve mina q subject to 1 + q ≥∣∣∣
∣∣∣ 1−q

Ra−QT r

∣∣∣
∣∣∣ ; TL(a) � 0

Compute matrix M for each model. Columns
of M represent images obtained under indi-
vidual harmonic lighting. Also compute the
QR decomposition of M. This step may be
online if the pose of the object is unknown.

Select Model with minimum error.

Figure 2: Specular Object Recognition Algorithm

where G(ll2l1;m1 −m2,m2,m1) are the Gaunt coefficients. Since each element of TL is a linear
combination of Gaunt coefficients, we can write it as a linear combination of matrices of Gaunt
coefficients, with the elements of a as coefficients.

TL =
L∑

l=0

l∑

m=−l

almGlm (16)

where Glm(l1(l1 + 1) + m1, l2(l2 + 1) + m2) = G(ll2l1;mm2m1). Note that G(ll2l1;mm2m1) is
zero unless m = m1 − m2. To speed up computation, the matrices Glm are precomputed and
stored. Since SDP solvers usually deal only with real valued problems, we use real versions of
spherical harmonics instead of the normal complex versions, as described in [7]. The flowchart
2 describes the whole object recognition algorithm.

The SDP is solved in Matlab 6.5 using the SDPT3 [17] package. Since implementing
it directly in SDPT3 is difficult, yAlmip [18] is used for formulating the problem. This is
a problem translator that can convert the problem description in its format to that of a wide
variety of SDP solvers available for Matlab. SDPT3 uses a polynomial time predictor-corrector
primal-dual infeasible path following algorithm to solve SDP and SOCP problems, and is one
of the fastest solvers available for small to medium scale problems. Table 1 compares the times
for recovering lighting from an image, using our algorithm (SDP) and the Basri and Jacobs
[1] algorithm (Delta), as the number of harmonics used increases. The computer used was a
2.66GHz Pentium 4 with 512MB RAM. [1] use a non-negative combination of delta functions
to represent lighting. As the number of delta functions increases, we find that this method
produces the same solution as SDP. In this comparison, the number of delta functions is set to
obtain less than 1% error. The image size used was 26 × 51. Increasing image size just adds
the same small time (for the QR decomposition) to both methods. From the table, we see that
the time for SDP increases more slowly than that of Delta, and SDP overtakes Delta at around
L = 6. In our experiments, we have found using L = 10 to be sufficiently accurate for a lot of
common specular objects. In this case, our method is 35 times faster than Delta, while being
exact as well.
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Number of SDP Number of Delta
Max L Harmonics time Delta time

(L + 1)2 (s) functions (s)

2 9 0.38 32 0.03
4 25 0.61 1922 0.52
6 49 1.41 1922 1.41
8 81 1.92 1922 4.28
10 121 3.55 30722 126

Table 1: Speed comparison of SDP and Delta function method [1].

5.2 Experiments on Synthetic Images

In these experiments, we evaluate the effect of using the non-negativity constraint (SDP). If the
constraint is not imposed, the problem is reduced to simply solving a system of linear equations
(LIN).

5.2.1 Variation of error with model specularity and query image frequency

In this experiment, we investigate the effect of the frequency content of the query image and
the specularity of the object on the importance of the non-negativity constraint. The model is a
varying linear combination of a mirror and a uniform Lambertian albedo (α is the proportion of
mirror). The query images are composed of individual harmonics (Yl0 for l = 1, . . . , 30). These
elementary query images will enable us to predict SDP’s behavior qualitatively on normal
images, which are a linear combination of individual harmonics. The optimization procedure
uses spherical harmonics up to degree L = 10. Mirror reflection causes image harmonics of
order up to double that of incident light harmonics (i.e up to order 20).

Since the images are not produced by any object, we don’t expect any model to have zero
error. The magnitude of error will give us an idea of how well the two methods can avoid
choosing the wrong model : a larger error means that it is more difficult to fool. The results
are shown in figure 3. Firstly, note that SDP has higher error than LIN (which is almost zero)
for L ≤ 20. This is the range of image frequencies that are modeled by the algorithm and the
use of SDP should reduce recognition errors here. However, SDP error decreases as the model
becomes more specular, and hence the advantage of using SDP decreases. For mirrors and
almost-mirrors, using SDP is not likely to help significantly in recognition. Also, we can use
the spherical harmonic content of the image to guide us in choosing the number of harmonics
required to represent lighting. For example, if most of the harmonic content of the image is of
order less than 20, L = 10 in the recognition algorithm should suffice.

5.2.2 Fooling LIN

We can use the conclusions drawn from the previous experiment to construct synthetic examples
that will clearly show that it is possible for LIN to make a mistake between two objects. Take a
sphere with uniform albedo. Obtain a non-negative image from this sphere using low frequency
lighting that is negative at some places. Use this image as the albedo of a second sphere. Under
low frequency lighting, LIN cannot distinguish between these two objects but SDP can. The
example is shown in figure 1.
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Figure 3: Error vs query image frequency and model specularity: (a) Non-negativity not im-
posed (LIN), (b) Non-negativity imposed (SDP)

5.3 Experiments on Real Images

Experiments were performed on two real objects to support the results of the synthetic ex-
periments. The first object was a shiny rubber ball, chosen because it was easy to construct
its structural model. The second object was a painted ceramic salt shaker. In both these
experiments, it is assumed that the the object can be fairly well represented by the mirror +
Lambertian model, and that α is constant for the whole surface. These assumptions are not
necessary for our method, but they make model construction easier. The first experiment shows
that SDP is more robust to noisy models than LIN or a method that simply ignores specularity.
First we describe the procedure used for obtaining the surface normals, albedo and α of the
surface.

5.3.1 Reflectance Model Construction

The objects used in the experiment were either spherical (ball) or cylindrically symmetric (salt
shaker) to enable obtaining surface normals from silhouette images. The full procedure for
model construction was as follows :

Surface Normals : First, a silhouette image of the object was taken, by strongly illuminating
the background of the object, while keeping the light incident on the object itself to a
minimum. On appropriate thresholding, we get a silhouette image. Erroneous pixels in the
silhouette image were reduced using a morphological closing operation. The object outline
was obtained using the image gradient. This was further smoothed using a Gaussian. For
the ball, the center and radius were estimated by fitting a circle to the object outline.
These were used to obtain a 3D model and hence surface normals of the sphere. For
cylindrically symmetric objects, the axis of symmetry of the object was estimated by
fitting a straight line through the outline points. The object outline and the axis of
symmetry together gave the 3D structure and hence surface normals of the cylindrically
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symmetric object.

Albedo and α : The object was illuminated by a point source of light and its image was
captured. To enable reflectance measurement at specular points, 3 images were taken with
different exposure times. The first exposure time was set very small (around 1

100 th– 1
20 th of

a second) so that the specularity caused very little saturation. The second exposure time
was set to the largest value so that the Lambertian reflection did not cause saturation
(around 10–30 seconds). Finally, the third exposure was set to a suitable intermediate
value (around 1 second). 6 such image sets using different directions of the point light
source were obtained, taking care to keep the source intensity constant. Next, a single
high dynamic range image was constructed from each image set by combining unsaturated
pixels from each image, appropriately scaled by the exposure ratio. The region that
was not dark in the shortest exposure image was marked as specular. The direction of
incident light was calculated using the position of the center of the specular region. The
Lambertian region reflectance, corrected for the cos(θ) (θ = angle between surface normal
and incident light direction) factor, is proportional to the albedo. For each image set, this
is obtained only in the non-specular regions that was illuminated by the points source. To
obtain it everywhere on the surface, we calculate the median of the values obtained from
the 6 image sets. Since the constant of proportionality doesn’t affect our computations,
and we simply normalize the obtained albedo by the maximum value. Next, we need an
estimate of α. This is the ratio of the specular to total (specular + Lambertian reflection,
if the Lambertian albedo was 1) reflection at a point. An estimate of the specular reflection
at a point is the sum of grayscale values in the specular area (since lighting is by a point
source). Now we need the total Lambertian reflection from this point in all directions,
assuming albedo 1. For a sphere, this is simply the sum of the Lambertian reflectance at
all points of the illuminated hemisphere, normalized by the albedo. For a cylindrically
symmetric object, this has to be estimated using the range of directions of the surface
normals that are present. The median of the ratio of specular to total reflection from the
6 image sets gives an estimate of α.

5.3.2 Shiny rubber ball

(a) (b) (c) (d) (e)

Figure 4: Shiny Rubber Ball: Left to Right: (a) Query Image (b) Measured Albedo (c),(d),(e)
Albedo with 8.3%, 15.4% and 24.5% noise levels that fooled LIN, LAMB and SDP respectively.

The experiment consisted of comparing the error difference when lighting is recovered by
the correct model, and when it is recovered by a uniform albedo model. The albedo and α for
the ball were measured in a separate experiment. A value of α = 0.04 was obtained. Next,
we repeated the experiment using noisy versions of the albedo, to find out which method gets
confused first. For comparison, the same experiments were also done assuming a Lambertian
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(a) (b) (c) (d) (e) (f)

Figure 5: Ceramic shaker (LIN vs SDP): Left to Right: (a) Measured Albedo. (b) Query
Image. (c) Best image using correct model and LIN (Error = 8.0%). (d) Best image using
uniform model and LIN (Error = 8.7%). (e) Best image using correct model and SDP (Error
= 10.3%). (f) Best image using uniform model and SDP (Error = 11.8%). SDP has a higher
error difference than LIN between correct and wrong models, and so should be harder to fool.

model (LAMB), not using the non-negativity constraint and only using a 9D subspace (L = 2).
The results are shown in table 2 and the corresponding images are shown in figure 4. The error
difference with SDP is larger than that with LIN or LAMB. Since it is a specular object, LAMB
has a much higher error than LIN or SDP, even with the correct model. A more noisy model
is needed to confuse SDP, as compared to LIN or LAMB.

Method LIN SDP LAMB

Correct Model Error 6.99 10.34 19.48
Uniform Model Error 9.12 19.18 22.26

Noise needed to 8.3% 24.5% 15.4%
fool method

Table 2: RMS error obtained when matching the query image to the correct model and a uniform
albedo model, using various methods. Gaussian noise (with σ as a percentage of correct albedo
standard deviation) is added to the model albedo till the method gives the same error as that
for the uniform model. LIN and LAMB are fooled more easily. Also, since it is a specular
object, LAMB has a large error even for the correct albedo.

5.3.3 Ceramic shaker

The albedo pattern and α of the shaker were obtained exactly as that of the ball. The measured
value of α was 0.0031. Although this does not seem much, the shaker was specular enough so
that the entire room could be seen in it under normal room lighting. The 3D model of the
shaker was also obtained using its cylindrical symmetry. A query image was obtained by using
almost uniform lighting (to give a low frequency image). The errors obtained when lighting
recovery was attempted using LIN and SDP for a uniform model, as well as the measured model
are shown in figure 5, along with the generated images. We can see that SDP produces an error
difference between the correct and uniform (incorrect) models that is larger than that produced
by LIN. We can expect that in this case too, a noisy model will fool LIN more easily than SDP.
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6 Conclusion and Future Work

We have introduced a new method for enforcing the non-negativity constraint of light in lighting
recovery and object recognition. The method is based on the extension of Szego’s eigenvalue
distribution theorem to spherical harmonics. It is exact and faster than the previous method.
From the experiments on synthetic as well as real data, it is clear that the non-negativity
constraint is indeed helpful in recognition. The SDP method enables better discrimination
between the correct and incorrect models, especially in the presence of noise.

The non-negativity constraint enables better recognition by reducing the space of lighting
conditions that are possible. We would like to theoretically quantify this reduction in the space
of images. Also, we would like to apply this method to various other problems, like environment
map creation in computer graphics.

Appendix

Appendix A Spherical Harmonics

Appendix A.1 Complex Spherical Harmonics

The Surface Spherical Harmonics [5] are a set of orthonormal basis functions for the set of all
functions f(u) defined on the surface of the sphere S2, similar to Fourier basis functions on the
Circle. They are denoted by Ylm, with l = 0, 1, 2, . . . and −l ≤ m ≤ l.

Ylm(u) =

√
2l + 1

4π

(l − m)!

(l + m)!
Plm(cos θ)eimφ

θ ∈ [0, π], φ ∈ [−pi, pi], u = (θ, φ) (17)

where Plm are the Associated Legendre Functions, defined by Rodriguez Formula as:

Plm(z) =
(1 − z2)m/2

2ll!

dl+m

dzl+m
(z2 − 1)l

A useful relation of spherical harmonics is :

Y lm = (−1)mYl,−m (18)

A function f(u) can be expanded in terms of spherical harmonic basis functions, analogous to
a Fourier Series expansion of f(θ) on the circle S.

f(u) =

∞∑

l=0

l∑

m=−l

flmYlm(u) (19)

The spherical harmonic coefficients flm can be computed as

flm =

∫

S2

f(u)Y lm(u)dσ(u)

dσ(u) = sin θdθdφ (20)

The Clebsch-Gordon (CG) coefficients C(l1l2l3;m1m2m3) [13] are real numbers which appear
in many relations involving spherical harmonics. They are zero unless all of these conditions
are satisfied :
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1. m1 + m2 = m3

2. l1, l2 and l3 satisfy a triangle condition ∆(l1l2l3) : li ≤ lj + lk ∀ i, j, k = 1, 2, 3

3. |m1| ≤ l1, |m2| ≤ l2, |m3| ≤ l3

CG coefficients satisfy the following symmetry properties [13]:

C(l1l2l3;m1m2m3) = (−1)l1+l2−l3C(l1l2l3;−m1,−m2,−m3) (21)

= (−1)l1+l2−l3C(l2l1l3;m2m1m3) (22)

= (−1)l1−m1

(
2l3 + 1

2l2 + 1

)1

2

C(l1l3l2;m1,−m3,−m2) (23)

The integral of the product of three spherical harmonics, called the Gaunt Coefficient or
coupling coefficient, appears in a lot of applications.

G(l1l2l3;m1m2m3) :=

∫

S2

Yl1m1
Yl2m2

Y l3m3
dσ(u)

=

√
(2l1 + 1)(2l2 + 1)

4π(2l3 + 1)
C(l1l2l3;m1m2m3)C(l1l2l3; 000) (24)

Note that both CG Coefficients and Gaunt Coefficients are real numbers.

Appendix A.2 Real Spherical Harmonics

For a real function, representation in terms of complex spherical harmonics is redundant due
to the relation (18). A more efficient representation is in terms of real spherical harmonics [7],
defined as :

Xlm(u) =






√
2Re(Yl|m|(u)) for m > 0

Yl0(u) for m = 0√
2Im(Yl|m|(u)) for m < 0

(25)

This choice of real spherical harmonics conserves the total energy in a complete set of
harmonics of a particular order (l). We can also treat this as an orthonormal transformation :

Xlµ(u) =
∑

m

Uµ
lmYlm(u)

The matrix Ul of size (2l + 1) × (2l + 1) has the following form :

Ul =
1√
2




1 (−1)l

. . .

1 −1√
2

−i −i
. . .

−i (−1)li
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Next, we can calculate the real Gaunt (R-Gaunt) coefficients [7], or the coupling coefficients
for the real spherical harmonics. These can be defined as :

GR(l1l2l3;m1m2m3) =

∫

S2

Xl1m1
(u)Xl2m2

(u)Xl3m3
(u)du (26)

It is immediately clear that the R-Gaunt coefficients are invariant to any permutation of the
(limi) pairs. Hence, without loss of generality, we can assume that |m1| ≥ |m2| ≥ |m3|. This
choice makes their calculation from Gaunt coefficients much simpler. Using the definitions of
real spherical harmonics, we can calculate R-Gaunt coefficients as in equation (27).

GR(l1l2l3;m1m2m3) =






2G(l1l2l3;m2 + m3m2m3)Re[U
m1

l1m2+m3
Um2

l2m2
Um3

l3m3
] +

2G(l1l2l3;m2 − m3m2 − m3)Re[U
m1

l1m2−m3
Um2

l2m2
Um3

l3−m3
] all mi 6= 0

2G(l1l2l3;m2m20)Re[U
m1

l1m2
Um2

l2m2
] m3 = 0

δm10G(l1l2l3; 000) m2 = m3 = 0

(27)

Appendix B Semidefinite Programming

The basic problem of semidefinite programming [16] in primal standard form can be stated as :

min
X

C • X (28)

subject to Ai • X = bi, i = 1, . . . ,m.

and X � 0

Here X ∈ SR
n×n (the space of real symmetric matrices of size n × n) is the variable and

Ai ∈ SR
n×n, C ∈ SRR

n×n and b ∈ R
m are given. A ≻ (�)B means that A − B is a positive

(semi)definite matrix.
The • operator is the inner product operator of two matrices, defined by A •B = tr (AT B).

The associated norm is the Frobenius norm ||A||F = (A • A)
1

2 .
A more convenient formulation of SDP is the dual standard form :

max
y,S

bT y (29)

subject to

m∑

i=1

yiAi + S = C

and S � 0

where y ∈ R
m and S ∈ SR

n×n are the variables and. This is a convenient formulation
because we can get rid of the slack variable S and write the problem as :

max
y,S

bT y (30)

subject to

m∑

i=1

yiAi � C
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This is the Linear Matrix Inequality form, which occurs commonly in applications. Note
that our constraint TL(a) � 0 is also of this form, with C = 0.

A closely related problem is Second Order Cone Programming (SOCP). Here, the constraint,
instead of positive definiteness of a matrix, is t ≥ ||y||, where t is a scalar and y ∈ R

n. This
makes the vector

(
t
y

)
lie inside a second order or Lorentz cone in the space R

n+1. This is a
useful formulation because algorithms for solving SOCP problems are faster than those for SDP
problems. The following interesting property enables the conversion of some SDP problems into
SOCP ones.

Theorem 8 (Schur Complement). Suppose U =

[
A B
BT C

]
with A and C symmetric and

A ≻ 0. Then,
U ≻ 0 (� 0) iff S = C − BTA−1B ≻ 0 (� 0)

The matrix S is called the Schur complement of A. For a proof, see [16]. Using this theorem,
we can see that

[
tI y
yT t

]
� 0 is equivalent to t ≥ ||y||

Appendix C Theorem of Carathéodory

This is an important theorem in the study of the Trigonometric Moment Problem.

Theorem 9. [4](Section 4.1) Let c1, c2, . . . , cn be given complex constants not all zero, n > 1.
There exists an integer m, 1 ≤ m ≤ n, and certain real constants ρp, θp; p = 1, 2, . . . ,m, such
that ρp > 0, eiθp 6= eiθq if p 6= q, and

cν =

m∑

p=1

ρp eiνθp (31)

The integer m and the constants ρp and eiθp are uniquely determined.

If we define c−ν := cν and c0 is such that the Toeplitz matrix formed from cν {ν = −n,−n+
1, . . . , n} is positive semidefinite, then the equation (31) is valid for all ν = −n,−n + 1, . . . , n.
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