
Vega Postgres

Andrew Fichman
Advisor: Leilani Battle
University of Maryland

December 2019

Abstract

Vega is a visualization grammar along with a
JavaScript run-time that generates flexible and
dynamic browser-based visualizations. Vega
specifications allow designers to declare external
data sources, but these sources must be
JSON-formatted files that the run-time loads
entirely into memory prior to evaluation. This
causes performance issues when datasets are on
the order of gigabytes or more, such as sluggish
user interfaces and browser crashes. To address this
limitation, we provide an extension, Vega Postgres,
that offloads storage and computation for Vega’s
aggregate transforms to a Postgres database server.
The extension has two components: a Postgres
transform for Vega, along with a middleware server
to forward queries from the browser to a database,
and an algorithm that rewrites aggregate transform
nodes as Postgres transform nodes at the Vega
dataflow level. With this extension, we hope to
enhance the Vega ecosystem to enable greater
scalability.

1 Introduction

Interactive data visualizations are important
because they promote data exploration, insight
discovery, and hypothesis generation. Vega
is an effective and highly flexible interactive
visualization system that provides a fully
declarative language for specifying visualizations
[7]. Vega specification are JSON-formatted files
that adhere to a specialized grammar, defining data
sources, user-interactions, data transformations,
visual encodings, and data dependencies. The Vega
compiler parses these specifications into a dataflow
graph, which the Vega run-time then executes to

generate SVG or Canvas visualizations in a manner
that achieves superior interactive performance
[11]. The Vega project is browser-based and its
functionality is exposed as a set of Node.js modules.

As datasets continue to grow, tools such
as Vega need the ability to scale. In
its typical usage, Vega’s entire procedure of
generating visualizations—including loading all
data—happens in the browser. This presents
two immediate limitations. First, the amount
of data that can be visualized using Vega is
limited by the amount of data that can fit
into memory in the browser. In practice, this
limitation restricts dataset sizes to hundreds of
thousands or low millions of records, depending
on the number of attributes involved. Second,
all the computational load involved in performing
aggregate transformations on input data (e.g.
averages, counts) is placed on the browser
application running on the end-user’s computer. It
is possible to run Vega in a Node.js process, but
the Vega dataflow is not as efficient as a relational
database management system (RDMS). Further,
data sources would still have to be fully loaded into
the Node.js process’ memory. Our work seeks to
provide the Vega ecosystem with an enhancement
to overcome these challenges by offloading storage
and computation to the Postgres RDMS.

1.1 Vega Example

Vega specifications are schematized JSON objects
that define interactive data visualizations in a
declarative fashion. In Fig. 1 we provide an
example Vega specification that defines a simple
bar chart. In this section we will explain this
example, detailing the major properties declared
within the specification.

1

Figure 1: Vega specification for a bar chart.

• $schema: URL to the JSON schema that the
Vega specification uses.

• width: pixel width of the visualization.
• height: pixel height of the visualization.
• data: list containing a single inline data source

named table whose entries are (category,

amount) tuples. Note that URLs to JSON-files
are also allowed.

• scales: defines two scales xscale and yscale,
whose domains are determined by the category

and amount fields, respectively, from the table

data source.
• axes: locations and scales for two axes. One

axis uses xscale and is located at the bottom of
the visualization; another axis uses yscale and
is located on the left of the visualization.

• marks: data encodings for the visualization.

– marks.type: specifies that each mark is
rectangle (the visualization is a bar chart).

– marks.from: specifies that the data source
for the rectangle marks is table.

– marks.encode: specifies the horizontal
location (x), width (width), vertical starting
location (y2), and height (y) of each rectangle
mark. Note that these properties are within
the enter property, indicating that they
should be set on initialization.

In Fig. 2 is the visualization generated by Vega
from the specification in Fig. 1. Notice that there
are three generated rectangle marks that encode
the three data values from table: (A, 28), (B,

55), and (C, 43).

Figure 2: Bar chart generated from the Vega
specification in Fig. 1.

1.2 Our Contribution

The above specification provides an example of
a dataset that Vega easily handles. Although
Vega’s capabilities extend further, i.e. to datasets
with hundreds of thousands or low millions of
tuples, modern datasets often exceed the bounds
of these capabilities. The goal of this work is to
address Vega’s scalability limitations by providing
an extension to Vega that offloads storage and
aggregate transform computation to a Postgres
database server [6]. Our extension has the following
two components.

Postgres Transform. This is a new Vega
transform (see Section 3.1) that executes a specified
query against a Postgres database server during the
run-time evaluation of the dataflow graph. The
transform—running in the browser—is supported
by a lightweight middleware server that forwards its
requests to a Postgres back-end. This contribution
grants Vega’s dataflow the ability to leverage the
performance capabilities of an RDMS, allowing
users to specify aggregate queries against large
datasets that cannot be handled in the memory of
a single browser or Node.js process.

2

Rewrite Algorithm. Our algorithm (see
Section 3.2) rewrites the Vega dataflow graph just
before its initial run-time evaluation. This rewrite
identifies each top-level Vega aggregate transform
node that is downstream from a Postgres data
source, replacing it with a Postgres transform node
that is configured with an equivalent generated
SQL query. Once rewritten, Vega’s dataflow
is poised to wield Postgres’ strength as an
RDMS to support large-scale aggregate queries.
The algorithm we provide allows Vega users to
immediately reap the performance benefits of an
RDMS back-end: automated query generation
means they get scalability benefits for free, with
virtually no changes to their Vega specifications.

2 Related Work

There is other work that seeks to improve
Vega’s scalability. The scalable-vega [9] project
provides a custom Vega transform that executes
a hand-written, specification-declared SQL query
against an OmniSciDB database; this was the
primary inspiration for our research. We sought
to continue this work by generating SQL queries
from the Vega specification, rather than relying
on hand-written queries. VoyagerDB [8] is an
attempt to provide scalability to Voyager [12] by
generating SQL queries directly from Vega-Lite
[10] specifications. Here we take a similar
approach, but generate SQL queries from the
compiler-generated Vega dataflow, rather than a
Vega-Lite or Vega specification directly. Finally,
ibis-vega-transform [4] interprets transforms from
Vega specifications as Ibis [3] expressions, which
are then executed against a SQL database.
Again, ibis-vega-transform operates on Vega
specifications directly, whereas we operate on Vega
dataflows.

3 Extension Components

To improve the scalability of Vega, we provide an
extension that offloads data source storage and
computation for Vega aggregate transforms to a
Postgres database server. This extension has two
components. The first component is a new Vega
transform that executes a specified query against
a Postgres database server during the run-time
evaluation of the dataflow graph. Code for this
component can be found in the vega-transform-pg

Node.js module here. This component is supported
by a lightweight middleware server that forwards

requests from the browser to a Postgres database
server. The second component is an algorithm that
generates SQL queries from top-level aggregate
transforms that are downstream from those data
sources; the algorithm replaces each such aggregate
transform with a VTP containing an SQL query
with matching semantics. Code for the middleware
server and the second component—along with
example Vega Postgres specifications and a
README explaining demo setup—can be found
here. In the next section, we will discuss the first
component in more detail.

3.1 Postgres Transform

Here we describe the first component of our Vega
extension. It is comprised of two parts: a
custom Vega transform that creates Postgres query
requests and a middleware server that forwards
these requests from the browser to a Postgres
database server. We describe the transform’s
implementation in section 3.1.1 and the middleware
server in section 3.1.2

3.1.1 Transform Implementation

The Vega language is highly extensible. One way in
which developers can extend it is by adding custom
transforms. This involves extending the base
Transform class from Vega’s Node.js transform

module [7].

Figure 3: Snippet from a Vega specification with a
Postgres data source.

The primary function that derived types
override to achieve custom functionality is the

3

https://github.com/heavyairship/vega-transform-pg
https://github.com/heavyairship/scalable-vega

Transform.transform function, which is invoked
at run-time as the Vega dataflow is executed,
either due to change propagation triggered
by user interaction or on initialization [11].
The Transform.transform function takes data
tuples as input, performs some computational
transform on them, and then generates new data
tuples as output. We have developed a new
Node.js module vega-transform-pg that exports
VegaTransformPostgres (VTP), a custom transform
type that is responsible for executing SQL queries
against a Postgres database server. VTPs act
as data sources via placement in the transform
array for an entry in the data property for a Vega
specification (see Fig. 3). Each VTP is configured
with the following:

1. HTTP server options
2. Postgres connection string
3. Relation name
4. Generated SQL query

Since VTPs run in the browser, they do
not directly communicate with a Postgres
database server. Instead, they forward queries
through a lightweight middleware server (see
Section 3.1.2) specified by configuration (1)
(see Fig. 4). Configuration (2) determines
which Postgres database server to query and
is of the form postgres://host:port/database.
Both configurations (1) and (2) are specified
programmatically via the setHttpOptions()

and setPostgresConnectionString() functions,
respectively. Configuration (3) is a VTP parameter
that users declare in their Vega specifications
to determine the Postgres database relation
from which data tuples are gathered. Finally,
configuration (4) is the actual SQL query, which
is generated just before the execution of the Vega
dataflow (see Section 3.2).

Figure 4: HTTP options for a VTP instance.

VTPs are atypical Vega transforms in that
they do not take any input data tuples from the
Vega dataflow; rather, the input data tuples can
be thought of as the tuples from the Postgres

database relation the VTP targets. When a VTP’s
transform function is executed as part of dataflow
graph execution in the browser, it sends an HTTP
request containing an SQL query to a middleware
server and waits for the results. The middleware
server forwards the query to a Postgres database
server and then returns the query results to the
browser. When the VTP in the browser receives
these results, it emits them for propagation to
downstream nodes in the dataflow graph. It is
important to note that VTP transform functions
are blocking, synchronous operations.

3.1.2 Middleware Server

When a VTP’s transform function is invoked it
sends an HTTP request containing an SQL request
to a middleware server that we developed as part
of this project. The middleware service is a
lightweight Node.js Express server [1] that forwards
SQL query requests from a browser client to a
Postgres database (see Fig. 5).

Figure 5: Vega Postgres architecture.

The server exposes two routes, /createSql and
/query. The route /createSql is a utility route used
during development and testing that creates and
populates a Postgres relation from a list of JSON
tuples. This route expects the HTTP request
body fields postgresConnectionString (of the form
postgres://host:port/database), data (a list of
tuples to insert into the relation), and name (the
name of the relation to create). The /query route
forwards an SQL query to a Postgres database

4

is the route of primary importance, as it is the
route requested by a VTP’s transform function.
This route expects the HTTP request body
fields postgresConnectionString (again, of the
form postgres://host:port/database) and query

(the SQL query to execute). Both /createSql

and /query are synchronous routes that only
return responses to the browser client when their
computations are complete.

The middleware server limits the number of
Postgres connections by communicating with the
Postgres database server using pg.Pool from the
node-postgres Node.js module [5], and it inserts
tuples efficiently for the /createSql route by using
the pg-format Node.js module [2].

3.2 Rewrite Algorithm

The Vega compiler parses specifications into a
Vega dataflow, which is a directed graph with
nodes that contain information about data sources,
transformations, user interactions, and visual
encodings.

Figure 6: Dataflow rewrite example. The top-level
aggregate nodes (outlined in red) downstream from
the specification-declared VTP (outlined in purple,
before) are rewritten as VTP nodes (outlined in
purple, after) containing SQL queries with
corresponding semantics.

One specific type of transformation node is the
aggregate transform node, which summarizes a
stream of input tuples to generate stream of output
tuples. Each aggregate transform specifies input
fields, aggregate operations (e.g. count, average,
standard deviation), groupings, and output field
aliases.

The algorithm we provide identifies each
top-level Postgres-dependent aggregate node in
the dataflow (i.e. nodes of type aggregate that
are downstream from a specification-declared VTP
with no intervening aggregate nodes) and then
overwrites its transform function with a VTP
transform function (see Fig. 6) that is configured
with an SQL whose semantics match those of the
original aggregate operation. Here we will describe
the algorithm in detail. Users writing a Vega
specification can declare a VTP as a datasource
by adding it to the transforms array of an entry in
the specification’s data property (see Fig. 3).

When the Vega compiler translates the Vega
specification to a dataflow graph, a node will be
generated for each specification-declared VTP. Our
algorithm, which rewrites the dataflow graph after
compilation but before execution, has the following
steps:

1 let s = {specification-declared VTP nodes}

2 for v in s:

3 let n = {top-level aggregate nodes

4 downstream from v}

5 for e in n:

6 let q = gen_sql_query_for(e)

7 e.transform = VTP(q)

8 dataflow.remove(v)

Listing 1: Algorithm to rewrite aggregate
transforms.

The SQL query generation is straightforward.
Aggregate transform nodes in the dataflow graph
are JavaScript objects that contain properties for
input fields (fields), aggregate operations (ops),
groupings (groupby), and output field aliases (as).
These map almost directly to SQL. Consider the
following aggregate transform:

1 {

2 "type": "aggregate",

3 "fields": ["f1", "f2", "f3"],

4 "ops": ["average", "stdev"],

5 "groupby": ["f3"],

6 "as": ["a", "sd"]

7 }

Listing 2: Example aggregate transform.

5

From such an aggregate transform, our algorithm
would generate the following SQL query:

1 SELECT AVG(f1) AS a, STDDEV(f2) AS sd, f3

2 FROM R

3 GROUP BY f3

Listing 3: SQL generated from aggregate transform.

Vega aggregate operators do not map exactly
to Postgres aggregate functions, but they are
close. There are two Vega aggregate operators
that result in a WHERE clause in the generated
SQL query, namely valid and missing. The
valid operator applied to a field f will generate
WHERE f IS NOT NULL; the missing operator applied
to a field g will generate WHERE g IS NULL. Multiple
valid or missing operators are supported, and
result in IS NOT and IS NOT NULL conditions chained
with AND logical operators. As of now, all Vega
aggregate operators are handled except argmax,
argmin, ci0, and ci1. There is one special
case to mention, namely where there are no
aggregate transform nodes downstream from a
given specification-declared VTP. In this case the
specification-declared VTP must remain in the
dataflow graph along with a generated query that
selects all fields from its specified relation that are
mentioned in downstream encode and extent nodes,
since these are used to generate marks in the final
visualization. This case is handled as follows:

1 let s = {specification-declared VTP nodes}

2 let f = {}

3 for v in s:

4 let n = {top-level encode or extent nodes

5 downstream from v}

6 for e in n:

7 f = union(f, e.fields)

8 if f != {}:

9 let q = gen_sql_query_for(q)

10 v.query = q

Listing 4: Algorithm to collect mark fields.

4 Limitations

The Postgres extension for Vega is limited to
aggregate transforms. One extension would be to
broaden its scope to handle other transforms (e.g.
filters) to further push storage and computational
load out of the browser. Another limitation of our
work is that it does not address the case where
the results of an aggregated query are themselves
large. In this case, the query will be executed
against a Postgres database relation and the results
returned to the browser will be a subset of all

the tuples in that relation, but even this may
prove to be too much data for the browser to
handle in some cases. One possible solution here
would be to detect when such cases occur and
then have the middleware server execute sampling
queries rather than the full aggregate queries. A
final limitation is that the handling of top-level
encode/extent nodes is limited to the case where
they do not reference a combination of fields, some
from Postgres database relations and others from
in-line or JSON file sources. Proper handling of
fields from mixed sources would involve filtering
out non-Postgres fields during the SELECT query
construction (see Section 3.2).

5 Further Work

One important tool built on top of the
Vega ecosystem is the Voyager visualization
recommendation system [12]. Voyager is a
browser-based tool that generates multiple
recommended visualizations at once, all of which
are specified in Vega. Our Postgres extension
to Vega could be applied to the Voyager project
to improve its performance through lower CPU
and memory usage. The value of our Postgres
extension could be validated by plugging it into
performance tests of Voyager on large datasets. In
addition to performance testing, our extension’s
scope could be increased by adding support
for other Vega transformation types, such as
filters. Supporting filter transforms would require
the ability to interpret Vega’s filter expressions
as semantically-equivalent SQL WHERE clauses.
Finally, the performance of our extension could
be enhanced by employing predicted-load-based
sampling techniques in the middleware server,
rather than always executing full-fidelity Postgres
queries.

6 Conclusion

While Vega is a flexible visualization language
that allows designers to declare external data
sources, these sources must be JSON-formatted
files that the run-time loads entirely into memory
before evaluation. This causes performance issues
at scale where the number of tuples exceeds a
few hundred thousand. In this work, we have
provided an extension that addresses this issue
by offloading storage and computation for Vega’s
aggregate transforms to a Postgres database server.
This extension, composed of a new specialized

6

Postgres Vega transform, a middleware server, and
a just-before-run-time rewrite algorithm, enhances
the Vega ecosystem with a way to improve
scalability.

References

[1] Express - node.js web application framework,
2017. https://expressjs.com.

[2] node-pg-format, 2017. https://www.npmjs.

com/package/pg-format.

[3] Ibis: Python data analysis framework for
hadoop and sql engines, 2019. https://

github.com/ibis-project/ibis.

[4] ibis-vega-transform: Python evaluation
of vega transforms using ibis expressions,
2019. https://github.com/Quansight/

ibis-vega-transform.

[5] node-postgres, 2019.
https://node-postgres.com.

[6] PostgreSQL: The world’s most advanced open
source relational database, 2019.
https://www.postgresql.org.

[7] Vega: A visualization grammar, 2019.
https://vega.github.io/vega.

[8] Andrew Fichman, Deepthi Raghunandan, and
Jessica Thompson. Extending voyager.
https://github.com/heavyairship/

voyager,
https://github.com/heavyairship/

voyager-server, 2018.

[9] Dominik Moritz. Scalable vega: a demo
of scaling vega to billions of records, 2019.
https://github.com/vega/scalable-vega.

[10] A. Satyanarayan, D. Moritz,
K. Wongsuphasawat, and J. Heer. Vega-lite:
A grammar of interactive graphics. IEEE
Transactions on Visualization and Computer
Graphics, 23(1):341–350, Jan 2017.

[11] Arvind Satyanarayan, Ryan Russell, Jane
Hoffswell, and Jeffrey Heer. Reactive
vega: A streaming dataflow architecture for
declarative interactive visualization. IEEE
Trans. Visualization & Comp. Graphics (Proc.
InfoVis), 2016. http://idl.cs.washington.
edu/papers/reactive-vega-architecture.

[12] K. Wongsuphasawat, D. Moritz, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager:
Exploratory analysis via faceted browsing
of visualization recommendations. IEEE
Transactions on Visualization and Computer
Graphics, 22(1):649–658, Jan 2016.

7

https://expressjs.com
https://www.npmjs.com/package/pg-format
https://www.npmjs.com/package/pg-format
https://github.com/ibis-project/ibis
https://github.com/ibis-project/ibis
https://github.com/Quansight/ibis-vega-transform
https://github.com/Quansight/ibis-vega-transform
https://node-postgres.com
https://www.postgresql.org
https://vega.github.io/vega
https://github.com/heavyairship/voyager
https://github.com/heavyairship/voyager
https://github.com/heavyairship/voyager-server
https://github.com/heavyairship/voyager-server
https://github.com/vega/scalable-vega
http://idl.cs.washington.edu/papers/reactive-vega-architecture
http://idl.cs.washington.edu/papers/reactive-vega-architecture

	Introduction
	Vega Example
	Our Contribution

	Related Work
	Extension Components
	Postgres Transform
	Transform Implementation
	Middleware Server

	Rewrite Algorithm

	Limitations
	Further Work
	Conclusion

